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Abstract

A numerical method for the computation of the singular behavior of the

solution of the Laplace equation is proposed. It is shown that the accuracy

of the computed stress intensity factor by the h,p and h-p version of the

finite element method has the same order as the square of the error of the

solution measured in the energy norm. Numerical examples are given.



1. Introduction

It is well known that the solution of elliptic partial differential

equations is singular in the neighborhood of the edges and the vertices of the

3domain of definition Q cR3. The character of the solution can be described

by the decomposition of the solution in singular and regular parts (see e.g.

[D],[G1I, [G2], [KO], [P], [PS1], [PS2]). Singular behavior of the solution

is of large importance in many applications. It is, for example, directly

related to the problems of fracture mechanics. Hence the numerical deter-

mination of the parameters of the singular behavior of the solution is of

great interest, for example, in problems of structural mechanics.

The major tool of computational structure mechanics is the finite element

method. In the 3 dimensional analysis, one of the most laborious parts of the

finite element computation is the mesh generation. Hence the method for the

determination of the singular parts of the solution should be fully integrated

with the data and algorithm used for solving the boundary value problem of the

partial differential generation of interest. In the engineering and

mathematical literature, many methods for the computation of stress intensity

factors were proposed. Most methods use different approaches for the approxi-

mation of the solution, the approximation of singularity functions (and

adjoint singularity functions), and the extraction of the intensity factors.

Our analysis addresses the error of the complete approach, i.e., it

includes the error of the finite element approximation, the error of the

computed singularity function, and the extraction of the vertex intensity

factors. The method analyzed here is partially related to the ideas in [LN].

There, however, a different eigenvalue problem was used and no error analysis

was performed.



In this paper we propose and analyze such method for the characteris.tiza-

tion of the singularity in the neighborhood of the vertex of the domain

Qc R. We restrict ourselves here to the Laplace equation and polyhedral

domains only. This paper is the first in a series. The other papers will

deal with elasticity problems, which are of especially large interest in

engineering. This method was implemented in the program STRIPE (S] and a

survey of the results in connection with the analysis of complex airplane

structures is given in [A].

In the neighborhood of a vertex the solution u of the boundary value

problem can be written in the form (see (2.11))

(1.1) u(x) = uo0 X) + XC.S Wx)

where C depends (globally) on the solution and S.(x) depends on the

geometry only. The so-called stress intensity functions S.Wx) as well as the

so-called stress intensity factors C. can be computed only numerically. The

function u0 in (1.1) vanishes faster towards the vertex than the functions

S Cx) (see e.g. (2.11b) for exact formulation).

The solution u(x) is computed approximately by the finite element

method. The error of the finite element solution u satisfies an asymptoticq

convergence estimate of the form

(1.2) [ uq - ull :5cF(N(q))
q

where II.{I is typically the energy norm, N(q) is the number of used degrees

of freedom and F(C) is a decreasing function depending on the used method,

e.g., h, p or h-p version. In practice we usually see in (1.2) approximate

equality, i.e. = instead • We will show in this paper that the stress

2intensity factors can be computed with the accuracy F(N(q)) , i.e., denoting

by C(q] the finite element approximation of C we get
I
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IC[q] -_Cl :5C F(N(q)) 2

where C is independent of q.

This is one of the major results of this paper.

Section 2 gives the formulation of the problem. Section 3 introduces a

Steklov problem and shows that the functions S in (1.1) are solutions of the

problem. In Section 4 we derive a formula for the extraction of the exact

stress intensity factors from the exact solution u.

Section 5 elaborates on the finite element method and formulates some

assumption about the meshes used. It shows that these assumptions are valid

for the standard h, p and h-p versions of the finite element method.

Section 6 elaborates on the numerical computation of the function S.J

in (1.1) and gives the estimates of the error.

Section 7 describes the numerical computation of the stress intensity

factors C and proves the error estimate. It shows that the accuracy ot

C q]) is of the same order as the square of the error of the finite element

solution u when measured in the energy norm.

Section 8 presents an illustrative example computed by the p-version of

the finite element method implemented in the program STRIPE.
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2. Formulation of the problem

Let Oc R be a polyhedron with the boundary an = U r = r, where ri
t=1

are the planar (open) faces of ag. By Vi i = 0,1,...,m we denote the

vertices of 12 and will assume that the vertex V = V0 is located in the

origin (i.e. V0 = 0). By EJ = 1,2,.--,n we denote the (open) edges of Q.

E1 ,i = t,...,no, are all the edges containing the vertex V Let

3 = min(dist(Ei,V )}, t = n0+ 1, .. ,n. Further by Q ,p>0 we denote the

open ball with the center in V and radius p. Set R = min(l,- 6) then
0 '3

obviously Q2R Q = Q2RrK where K is the infinite cone coinciding with

9 in the neighborhood of V For any p< 6 we denote UP Q nO, To
0* P P

aQna, r = rnQ . Further let r = rDuFN where rD = U r N = U r.,JpD jJNJ

DAN = * be the Dirichlet and Neumann part of r respectively and

rp,D r rD n p, rp,N r N A p,

We will be interested in the (weak) solution of the boundary value

problem

(2.1a) -Au = g in Q

(2.1b) u = 0 on rD

(2.1c) au on r

Denote by H1 () the usual Sobolev space, and let

(2.2a) 1 (Q) = {ueH 1D)Iu = 0 on Fr} if FDr #

(2.2b) 1 (0) = 1ueH f u dx = 0} if rD=.

Further let

(2.3) Ba(uv) f Vu. Vv dx

4



1 1
be the bilInear form defined on %CQ) x %(Q) and

1/2(2.4) IIUUE(M) = (Bna(u, u))

Obviously 11 " *EM) is equivalent with the standard Sobolev norm I MII

(if rD* )-

Later we will also use the notation

(Q = {uEH (Q )1u = 0 on r,} if r D#
lp p p,D p,D

(1) =ueH (Q )I u dx = O} if r

Pp f p, D=
n

P

The meaning of Bf (u,v) and HullUE(M ) is obvious.
P P

Now the weak formulation of the problem (2.1)-(2.3) is: Find uEH (Q2)
D

such that

(2.5) B (u,v) = [qv dx+ f g v ds for all ueH1(Q).J FN

if rD= we assume f g dx+ f gN ds = O.

r

(By ds we denoted the surface element).

We assume that g and gn are such that the weak solution exists (and

Is unique) e.g. geL 0 (Q), gNL Q(rN). Further we will assume that

a) g =0 In Q 2R

(2.6)
b) gN =0 on r 2 RN'

Remark 2.1. We assumed that u = 0 on rD for simplicity only. The

assumption (2.6) (together with u = 0 on 2R, D) is more essential. We

will briefly comment on It in Section 7. 0

5



Together with the usual cartesian coordinates x = (x,X 2 , x 3), we also

will use In the neighborhood of V0 (specifically in 1 P) the spherical

(polar) coordinate system, (r,@,V) centered In the vertex V0.

Let YP = {S} be the set of all functions Se%(12R) having the form

(2.7) S = r w(OV), A>- 1

and satisfying (in the weak form) the equations

(2.8a) -AS = 0 in "R

(2.8b) S = 0 on rR,D

(2.8c) as = 0 onr R, ND

In the case when all the faces r.,j = l,...,n which contain V0 belong to

the Neumann part of the boundary (i.e. rR,D = 0), the constant function also

satisfies (2.8) but we do not include it in Y.

Below we will see that the set Y is not empty and is denumerable, i.e.

Y = {S,$S 20-} with Sj = rAj wI(9,V), AaeR. We will assume that the S

are ordered such that Aj-< A J+I. The functions Se Y will be called

singularity functions.

Since
as = Ar-I1s
8r

the function S satisfies the equation

(2.9) B (S,v) = A b (Sv) VvEH(
i2R R '(

where

(2.10) bR (uv) =R-1 uv ds

0
rR

6



It is well known (see e.g. [D) [GII,[G2],[KO],[P]) that the solution u

of (2.1) (or equivalently (2.5)) admits (under assumption (2.6) for any s>O

the following decomposition on "RR:

(2.11a) u = u0 + Z CSJ, Si 4g

A +1/25s

where

(2.11b) Iu 0UO1 2 r-2sdv<

"DR

Here (2.11b) relates to the seminorm of the weighed Sobolev space HC1 S().

(2.11b) implies that u0 is In H 1(%) modulo constants. If rR,D €,

then u0 E H1s(R).

We will obtain (2.11) as a consequence of the results in Section 3 and 4.

Equation (2.11) shows that the behavior of the solution near the vertex is

determined by the singularity functions SJ,

Let

w = cjsj,

J 2

then the relative error in the energy norm between u and w goes to zeros

for r-)0, because of (2.11b). Therefore w is a good approximation of us

in H (1R) If r is sufficiently small.

The numbers C In (2.11) are called the vertex intensity factors.

With each singularity function S. of the form (2.7) we will associate

the adjoint singularity function

(2.12) Sj = r-l-Aw.cj )-J 'J

It is easy to check that S. satisfies (2.8 abc), but S . 1

7



3. The Steklov problcm

Coming back to (2.9) we introduce the Steklov eigenvalue problem: Find

all pairs (S.A), SeH C(.R) such that (2.9) holds.

In the case that Fr = , the trivial function S = 1, (A = 0) will not

be considered here.

We can cast the Steklov problem in a different form. To this end

define the operator T: H1( ) H --- •(MR) such that (with (2.10))

1(3.1) B R(Tu v) = b R(u,V) Vu, vEH%(%lR)

The operator T is obviously selfadjoint and is well defined by the
coercivity of B Since the trace mapping u • 11U , HI( )L20 ),

coerivit ruu~.H ~~ * (OR))R
R

is compact and the bilinear form b (u,v) is continuous on L 2(Fr) xL 2(F ),
R R

the operator T: H%( --) %("R) is compact.

Now the Steklov problem (2.9) can be cast in the following form:

Find (S,A), SEH(MR) such that

(3.2) ATS = S

1
or denoting A =

A

(3.2a) TS AS.

It is known from the theory of compact selfadjoint linear operators that

there are countably many eigenpairs (Sj,A.), A I R, with no accumulation

points except at A = 0. Furthermore the eigenfunctions S. yield anJ

orthonormal basis of the closure of the range of T. If A is a simple

elgenvalue, then S is uniquely defined up to a multiplicative factor. For

multiple elgenvalues Aj ... Aj+m we will assume that S J... Sj+m are

orthonormal with respect to BOR In this case only the span {S J.., Sj+m} is

8



unique but the orthogonal basis (S j,-,S j+m} is not unique.

From (3.1) we readily see that for u = Tv we have

(3.3a) Au = 0 in R

(3.3b) u = 0 on rR,D

(3.3c) au on ran -0o FR, N

(3.3d) au r0

a-Zi=v on R'

Hence the elgenfunctions S form a Hilbert space basis of the space

(defined in the variational sense):

1n on r au oN}r
2(QIR) = 'u• (zV R), Au = 0 in O•R' u = 0 on rR, D'an R, o

We also see that functions SFRO form an orthogonal basis of the space

L ( Or )

As usually we will assume that

- fO for k*j
(3.4a) BO (S Sk) =

IRJ for k= j

and

0 for k j
(3.4b) bR(SjSk 1

A = for k=j

In the case that r : 4, we will understand L(OR) and L 2(r ) as spaces
R, D HR

modulo constants.

So far we assumed that H Is a real space. We will extend it to

the complex space C by defining, as usual,

9



B R(uv) = f (Vu) - (Vv-dx,

OR

with b r(u,v) being analogously defined.

Denote by p(T) the resolvent set of T, i.e. p(T) = {zlzEC,(zI-T)-

exists as a bounded operator on 1 (R)) (by I we denoted the identity

operator). Further let o(T) be the spectrum of T i.e. o(T) = C-p(T).
-1

For any z ep(T) denote R CT) = (zI-T) , the resolvent operator.z

Let p be a nonzero eigenvalue of T with multiplicity m+1 and 7

be a circle in C centered at p which lies in p(T) and which encloses no

other point of o(T) than g. Then the spectral projection associated with

T at p is defined

(3.5) E = E(g) i R T)dz

see e.g. [BO1]. Now we prove

Theorem 3.1 Let (Sk Ak) be a Steklov eigenpair. Then Sk has the form

A 
k

(3.6) S k(r,e, q) = r wk((0,•)

Proof Let Sk (r,O,) be the Steklov eigenfunction. Then we can, for any

O<r5R, define

(3.7) a~k (r) = J (r,6p~)%C(RO.p)ds

F0r

For 0< r < R apply now Green's formula for S (r,e,V) and S (-rol )
1 k r r 1

in OR Then it can be readily seen that

10



(3.8) B (Sk(r, 0,, R (, e, R P)

"RI k r^

= , (r,p,9), Sj(R, 0,V)ds.

Fo
r,

On the other hand we have by scaling (2.9)

(3.9) B ( (r, ,), rR, , ()

" -1_ k r 1

= A. r 1 ] { k (rl,e,q), Sj(R,O,V)ds

r,

=a W(rl)Ajr1

Further we see that

(3.10) ar (rl.,eV), e ( ,Op)ds.

r,

_da~k)

dr 1

where the derivative on the right hand side of (3.10) is understood in the

weak (distributional) sense. Combining now (3.7)-(3.10) we get

da Wk)
'- = A r 1

dr

and hence

(3.1) (k) Cr) =-(k)rAi, 0<r<R
(3.11) a ( = Cj _ .

_(k) =0frkj
From (3.4b) we get C W 0 for k*j.

2 0Since S Ir0  is a basis of L (FR ) we obtain
jR



1RAk k Ak

which was to be proven. 0

We get Immediately

Corollary 3.2. The singularity function S are exactly the Steklov elgen-

function S (up to a factor or linear combinations for multiple elgenvalues).

0
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4. The vertex intensity factors

Let u be the solution of the boundary value problem (2.1) (or

equivalently (2.5)) and assume that (2.6) holds. Then we have ul0E(f.e )

and hence by corollary 3.2 u can be written in the terms of the basis

functions {S1,S2 ... }

(4.1) u = Z•sJ.

j=l

Let us show that (4.1) implies the decomposition (2.11) with C = CJ,

Let

(4.2) Uo =u- Z C%= S d Sj

A,+1<s A.+->s
j2- j 2

and for O<p<R

F(p):= I VU o 2 dx'

P

then by the orthonormality of S we get

F(R) = 2 C• = C < 0.
1

A + >s
J2

Further let

= X uR(x3 R] a~ASj;

A .+ >s
j2

then for sufficiently small c>O

(43) Fp) = eB (U
R BQR(U0'U0

= eR•-•2 []RI2Ai-< [R] 1+2(s-1/2)+c z < - 2S+_

A +1>s A +->s
J2 j2

13



Let
R

G = I I r -2SVuo2 r 2dr dw

0 (a~r•

where dw denotes the surface element on fR Hence integrating by parts

we get R

G = R- 2 I r- 2 SF'(r)dr R-2-2SF(R) + 2sR-2 Jr-2s-iF(r)dr

0 0

and using (4.3) yields

I r-2S IVu0 2 dx = R-2 = R-2-2S F(R) + 2sR-2 fr-2s- F(r)dr

"R 0

: C(1 + 2s f r-l÷Cdr) S C.

0

Therefore (2.11b) holds with C = C Hence we can use (4.1) and (3.4) to

express the intensity factors C

(4.4) C =B B(uSJ)=Ab(u,S) =i u S.ds.
,i 9R ' R 'j R j

R

Replacing u,S JA by their finite element approximations, we will use (4.4)

in section 7 to compute C numerically.

Remark 4.1 Note that in the case when A. is a multiple eigenvalue theJ

functions S are not unique and hence C depends on the choice of the

singularity function S For a simple elgenvalue A. the eigenfunction S.
J J

is unique up to a factor of -1.

14



5. Finite Element method

Let Pq (0),q = 1,2,... be the partition of £0 into the set of open

elements 7,i = 1,2,... M(q), W (O)cH1 ()) be the associated finite element
0' q - D

C0 -spaces and let N(q) be the dimension of W (0). Further let A =q q

(P (0),W (0)) and M = Ofq}.

Denoting by u the finite element solution of the problem (2.1)q

satisfying

(5.1) B (Cu v) = B (u, v) VVEW (a)

we obviously have

(5.2) IjuuqIIE(Q)= inf Iu-CllE(Q)
lEW (92)q

where B(u,v) and 1I 11IE(C) were defined in Section 2 (see (2.3), (2.4)). If

the data g'g in (2.1) are sufficiently smooth say geH- +s(Q), gN =aGn I

1 +s 1
for some CeH (Ql), s>0 then the weak solution HeHV(Q) of (2.1)

(resp.(2.5)) exists and is unique. It belongs to H1 +S(•) where 02

n
Q- U EA, E" being the A neighborhood of E.. In the neighborhood of

j=1  JJ

E jJ = 1,...,n and V ,i = 0,1,...,m, the behavior of u is determined by

the edge and the vertex singularity functions. The approximability of these

functions determines the convergence rate of Iju-uqIIE(Q) of the finite element

solution. We assume that the convergence of the finite element solution is

characterized by a nonincreasing function F: N -- ), with F(q) -0 as

q--w. More precisely, we will say that u is F-convergent if there existsq

a constant C independent of q but depending on u such that

(5.3) Ilu-uqB1E(Q) = inf Ilu-CllE(O) : CF(N(q))

15



Remark 5.1: Later we will assume that an estimate of the form (5.3) with the

same function F also holds for a class of solutions which will be specified

in Assumptions Al. A2P A3 below. It may be that the function F which

satisfies Assumptions Ait A2, A3 gives a less than optimal error estimate in

(5.3), e.g., in the exceptional case when the solution u is smooth.

An interesting question is the characterization of all functions u

satisfying (5.3) for a given function F(N(q)) and a given sequence of meshes.

For the description of such class of functions in a particular case we refer

to [BKP]. In practice we can assume that ]U-uuqDlE( )' CF(N(q)) which is a

typical case, but in the sequel we will only assume that (5.3) holds.

Let us describe the convergence function F for some typical examples.

Example 5. 1. The h-version method on a quasiuniform mesh. Let P q (Q) be the
q

standard family of quasiuniform simplical (in general, curved) meshes of the

1 1size q (see e.g. [CI],[C2]). Let Wq(MR) be the set of functions Hý(Q)

which are polynomials, of total degree _< d on each simplex. Then we have

(5.4) F(N(q)) = N(q)-1/3

where

(5.5) 1 = min(d,s,o-c}, c>O arbitrary

(5.6) (r = mrin{ k + 1,uV) Ik = O,...,m, t = 1,2,'-',n

where A Is the smallest vertex singularly exponent for the vertex
I

(I) _ i (I)
singularity function (see (2.11)) and P M where w is the

internal angle of 0l at the edge r If E = rI nrr and icED, JeN

or IEN, JED (i.e. the Dirichlet condition is prescribed on one side and
-I inted.B

Neumann condition on the other side of E£) then M F instead. By
11
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the regularity theory, we have then uE Hl+0-C (1), c< 0 arbitrary where we

denoted by Hl+0-C (1) the standard Sobolev space with fractional derivatives

(for definition see e.g [BL]). (5.4) then follows from the standard theory of

the finite element method.

Example 5.2. The p-version of the finite element method. Here P (Q) isq

fixed mesh of simplices (generally curved) and W (12) is the space of all
q

functions in H%(1) which are polynomials of degree q on each simplex.

Then we have

(5.7) F(N(q)) = N(-c)/3, c>0 arbitrary

where

(5.8) = min(s,2o),

where a- is given in (5.6) (see [DI], [D2]).

Example 5.3. The h-p version of the finite element method. Here P (1) isq

sequence of properly selected meshes and W (1) is the space of functions in
q

%•a1) which are polynomials of degree R(q) with R(q) -- w as q---c

properly selected. We assume that g is an analytic function on 0 and gN

is an analytic function on every face r0 We can then expect that

N1/4
(5.9) F(N(q)) = e-N

(5.9) was proven in the case that 12 cRn, n = 1,2 when

F(N(q)) = e--N/(n+l)

see [BG], [GP].

We need now to make additional assumptions about the family M.
0q

A1 : r0 coincides with the boundaries of the elements 5,q of the partition
R

P (12).
q

17



A2 : Let uEH %(Q), Au = 0 on CR and Au = 0 on C-%. Denoting

uI = ul R and u2 = ul assume that u1 resp. u2 can be (analytically)
Q-%

extended to a harmonic function on 02R resp. Q - 'R/ 2 and uI = 0, t = 1,2

D 2R-R/2). Then

(5.10) inf" IIu-CIUEM) < CF(N(q))
CEW qC()

A3 : Let uE( 22R) (as defined in Section 3). Then

(5.11) inf lju- JIIE( ) <_ CF(N(q)).

In (5.10) and (5.11) the function F(N(q)) is assumed to be the same as in

(5.3).

Let us now discuss the validity of the assumptions Al, A2' A3'

i) Assumption A,: It can be satisfied by the standard finite element

technique using the binding mapping of the master element (for the h-p version

see [BG] for details).

ii) Assumption A3 : Here ueV(fM2 R) implies that the function u has only a

vertex singularity at V0 = 0 and the edge singularities at the edges

00
EI i=1,''.,nO, but it has no additional singularities at ar Therefore, the

assumption A3 is satisfied in the examples 5.1, 5.2 and 5.3 by the direct

application of the corresponding approximation results.

iii) Assumption A2 : We will briefly sketch its validity for the examples

mentioned above.

Example 5.1. The h-version on the uniform mesh. For simplicity we will

restrict ourself to the case d = 1. Consider the space
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fu= {uEH') luCl)nU H2(R%), ulnn EH2Cn-nR)},

11ull2 = ull2+2 2
If2 H~c• H~c-.

Further let T h be the energy projection operator of 1on W ). Then by

h o q

the standard approach, see e.g [Ci], [C2], we have for vE" 2.

(5. 12) iv- hVllE(C) _< ChlIvllR2(f).

Applying the Interpolation theory (see e.g. [BL]) we see that for 1<s<2,

e = s-I

s= {HD.3R2}12 , f e {D ) I N.H(1R IO sM1

and hence for any ue ,

llu-"hUllE(Q) -5 Ch SHull RL."

Assume now that u satisfies assumption A2 . Then u has the same type of

singularities in 12R and 12-1R as solutions of (2.1) with smooth g and gN"

Hence unRe Hi+a-C ("Y) ul (RH_ HI -(-k) with o- as in (5.6) and

(5. iO) follows.

Example 5.2. The p-version. Here the validity of A2 follows by applying

Dorr's results. (see [Di], [D2]). He approximates first the solution u

having singularity of the vertex and edge type element by element using

weighted (Legendre type) spaces, imposing continuity at the vertices of

elements. Then the difference of the approximation on the edges and faces of

the neighboring elements (the discrepancy) in the (Legendre) weighted spaces

norm is estimated. Then it is shown that It is possible to extend this

discrepancy Into the elements where the extension mapping is continuous from
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the weighted spaces on the boundary to H in the element. Hence only the

smoothness of the solution in each element is employed. Realizing that in

every element, the function u can be decomposed into a smooth function and

the singular functions the arguments of [D1] and [D2] apply.

2
Example 5.3 The h-p version in R . Here the singularity is only in the

vertices of the domain and there are only finite number of elements which have

0
boundary on r As in [BG] we approximate u separately on every element

and then remove the discrepancy (discontinuity) of the approximation on the

boundary of elements. Because the solution in every (closed) element which

0
nonempty intersection with r is analytic, the arguments used in [BG] are

R

immediately applicable.
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6. Computation of the Singularity Functions

The singularity functions S (see Corollary 3.2) will be computed by the

finite element method as the approximate eigenfunctions of the Steklov

eigenvalue problem. We will assume that the assumptions A1CA3 introduced in

the section 5 hold.

The finite element solution of the Steklov problem is based on the

variational formulation (2.9) (2.10): Find SJ EW( and A EIR

such that

(6.1) BR ([qS v) = A q]bR (S[)],v) V vEW (qO).
•' J R 'qR

By normalizing the eigenfunctions and orthogonalizing the elgenfunctions for

multiple eigenvalues, we have, analogous to (3.4 ab),

[q] [q] 0 for k *j
(R j k 1 for k =j

(6.2b) b"(S [q) S[q])= 0 for k*j

'R -j k 1 for k=j

J

Let further (SJ, A ) j = 1,2,..- be the exact eigenpairs. Then we have

(sec [BOI]).

Theorem 6.1. Let S XSj+ ,--.,Sj+m be the eigenfunctions associated to the

eigenvalue A with multiplicity m+1 (i.e. Aj = Aj+1 = ... Aj+m). Then for

q sufficiently large there exist exact eigenfunction S j+,q,=

(depending on q) and satisfying (3.4) such that

(6.3) + ,j+ E() - C]1

(6.4) IA ~-A[q] 1 < cc.
.j+t j+ _2
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where

(6.5) C j = sup inf iS - IE(nR)SC:M(A) ]ISIIV(QR)= 1

CEWq (R)

and M(A ) is the eigenspace associated to the eigenvalue A. of multiplicity

m+1. 0

We will show later that we can impose additional conditions on S j+eq.

The constant C in (6.3) (6.4) is independent of q but depends on various

other factors (see [B021 for the discussion). In the sequel we will also

write S. instead of S. if no misunderstanding occurs.J ~ J,q

With the assumption A3 we get

(6.6) C. i C.iF(N(q))
J J

and hence from the theorem 6.1 we get

(6.7) IS - s([q]11  < CFN(q))
SIIE( MR) (

(6.8) IA . A[q] 1 C(F(N(q))) 2

j ~J

Remark 6.1 Note that the bilinear form bk (u,v) in (2.10) depends only on u

0
and v on r R This allows us in practice to eliminate first all unknowns

inside CI and obtain an eigenvalue problem on r only. By proper orderings
R

of unknowns the LU decomposition of the stiffness matrix on "R can be used

in the computation of u i.e. for the computations of the finite elementq

solution of (2.1).

Let us now write the finite element solution of the Steklov eigenvalue

problem in a different way, which is the basis of the estimates (6.3) (6.4).

This will be used in the next section too.

Let T•R be the elliptic projection of H'(%) into W (MR) defined

22
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by

(6.9) Bf2 (Tu,v) = B (UV), UEHu(Q)v e Wq(1R)

Define now T = TIRT where T is given in (3.1). Then T converges to T
q q q

in the norm of linear mappings HI(1R) HI(MR) as q o.

Further consider the spectral projection E(A 1) onto the eigenspace of

-1 -1
A of T given by (3.5) where 7 is a circle which encloses A but no

-1
Swhich Ak*AJ:

(6.10) E(A ') 1- J(T-zr)-ldz

Let SI]. be an eigenfunction of (6.1). This implies by definition of T
J q

that S[q] is an eigenfunction of T
J q

T S q] = (A[q]--1 [q]
q j J

We have then the following relation for the projection of an eigenfunction

S[q] of T onto the elgenspace of T

(6.1) g~qEAI~~_ 1 [• )- -I[

(6.11) [ - (T-zI) I(T -T)(T -zI) S[ dz

In (6.8) the roles of T and T are reversed in comparison with [BOl],q

section 7.

Let us impose additional conditions on S. :

Theorem 6.2. Let S~ q] t = O... m(j) be the approximate (finite element)j+"

eigenfunctions associated with the eigenvalue A of multiplicity m(j) + I.

Then there exists S J+,qrM(A ) satisfying (3.4) such that

(6.12) - S (] 1 5Cj+t,q j+e E(MR) -
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(6 13 - ( -1 )S[q] 11Cc2

j+t, j+q E(QtM ) C

where e Is defined by (6.5).

Proof. As mentioned previously, E(A )S[q] is the orthogonal projection of
j J+t

SInto M(Aj). Let

(6.14) S =E(A 1 )S[q]
j+.q E j j+t

We have by orthogonality

([q] 2 2 ~ [q]
(6.15) II-j+t"E(QR) - Ij+t,qllE(fR) Sj+t,q - j+t E(fR)

and hence

~ 2 < 2C
(6.16) 0 S 1- IS j+,qllE ( R) _ .C

Now we will construct by induction the orthonormal system of functions

SJ+t,q , t= O,''',k, satisfying (6.12) (6.13) by the Gram-Schmidt

orthogonalization process. Assume now that (6.12) and (6.13) hold for

0,.'., k- 1 (for k = 0 no assumption is necessary since S J+k,q

S J+k, and only eq. (6.18), (6.21) below are used). Then we definejkq

k-i

(6.17) Sj+kq Sj+kq- BOR §j[+kq §j+t,q]Sj+t,q

t=O

and

(6.18) Sj+kkq q

Iij+kq 11E(OR)

Consider first

k-1

(6.19) SJ+k,q SJ+k,q 2 ORL §J+k, q'§j+f, q)Jj+,q
e=O

Noting that by (6.14), (6.2a) we have
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B4S S~ q ) = 0, k,1 = 0. m(J)BR•§j+k,q' j+t - SJ+t,q )

B(RS[ q ]S[q] = 0, k,t = 0,--',m(j), k tB•[J+k' J+t

B = 0, k,l = 0,.. em(j)BfRLJ+k - SJ+k, q' SJ+t, q) =

and hence

B BJ+kq' S,]

= BflR[Sj+kqq-Sý ,S= _- t
[q [q ]

B O(§~k~- j+k Sj+t S+)

BQR(§j+k~q SJ+k j+e j+e, q]

Therefore

IBQR%[Sj+kq, Sj+t,q] - Ccq.

This yields

2
llSj+k, q - Sj+k, q 1E(MR) -< C

and by induction hypotheses we get also

(6.20) 11SJ+k, q - Sj+kqilE(R) -Cc 2

Using (6.16), we get

2
(6.21) 1 -JSj+k, q 1 ECfMR) >- 1 -Cc.,

and from (6.20) we get

(6.22) I11Sj+k,qIE(fl) - -Cc

Hence from (6.18) and (6.20) we get

IS- S §I <1Cc 2

j+k,q J+k,q E(RR)

which was to be proved. 0
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7. Computation of the Vertex Intensity Factors

The exact value of the vertex intensity factor is given by (4.4). Hence

we will numerically compute C[q] as follows:

[q] = Bl [Uq, Sq] A~q

(7.1) CJ B ,(uq, R u SUq Jds.

R

We then want to estimate the error C[q]_ -C

As we said in the remark 4.1, the stress Intensity factors C depend on

the choice of exact eigenfunctions S The eigenfunctions are not uniquely

defined if the associated eigenvalue A. is not simple. In this case we willJ

consider the stress intensity factor Cj+t,q which are associated with the

elgenfunctions Sj+tq, t = 0,--.m, which were introduced in theorem 6.2. The

decomposition (2.11a) of the exact solution can be expressed in this basis

with vertex intensity factors CJq depending on q:

u =u 0 + Cj,q§J,q*

A +-<Ss
J 2

For simplicity we will write in what follows S instead SJ,q.

We have now

Theorem 7.1 Assume that the assumptions AI - A3 are satisfied. Then for

sufficiently large q we have

(7.2) IC q]- C I q S C(F(N(q)))2

Proof. Using (7.1) we have to show

(7.3) IB •u [S~q] -B R(u.S) ) : C(F(N(q))) 2

We h,
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(7.4) BS ] B(u,B ) = B (S S [q] u)+B (S u-u
OR uq'i R O Ri J ORJ q

-B su = D_+D2-D3.

QR J q) 1 2 -3'

We will estimate D1 ,i = 1,2,3 separately.

1) Estimate of D3 . Using assumption A3 , we get

(7.5) 1 D31 : IlsS - [q] IE(1l[u-uq11IS CF(N(q))2
3 E1 ER) ) CFEN(OR)

which follows Immediately from (6.12).

2) Estimate of D Let weH 1(Q) satisfy
2 D

(7.6) B (w,v) = B (S.,v) VveH1(Q)

The function w exists and is unique. It can be readily seen that (7.6)

is the variational formulation of the problem

Aw = 0 in OR

Aw=0 in - OR

(7.7) W1r =0 8- 0
rD anr

[w 0 [8w) a sro= o L -nj -n-•
Rro ro

R 0 LeR I w n

By [RO we denoted the jump across rR.Let w W1 wR' = w R and
R

define w1  in 02R by

WI in R

(7.8) wA = w2 . _ j[ Q2 As

w2 l+2A i Ji - J) i 2R~ 2

Because we have S = R _+2 AJs on rR [w1 ro 0 and since
j o ', we have R
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a _R1+2AjSJ= 2A01 1 we ge_[ = 0.
(S A n ILn R- 0FR

Further, Awl =0 on IR and Aw2 = 0 on '22R " Hence

Awl = 0 on "2R and w1• •( 2 R)" This shows that w can be analytically

extended from nR Into 12R as a harmonic function.

Analogous1,, we can extend the function w2 on 0- '/2 by defining

Sin Q-%

(7.9) w2 = Aw+ _AJ[S R<R +2AjsJ] in %

Because of (5.1) we have for any w EW (Q)q q

D2 = B OR(S Ju-u) = B(w,u-uq) = B(w-w q, u-u q).

Using assumption A2  we get

(7.10) ID2 I _< inf 11w-0l E(M)1lu-uq lE (D) _< CF(N(q) ) 2

<=Wz (0)

3) Estimate of D1 .

Define as in (6.14)

(7.11) [q]= E(A1- )s5q]

Then

S s q = Si •[q] + §[q]-_S[q]

For sufficiently large q we have using (6.11)

S(q]-S-[q] = s[q] E(A I )S[q] -

= 2-- (T-zI)- (T -T)(T -zI)-ls q]dz
21lJ q q S
7

Since T S[q] = [- 1 [q] we have
q j FhT 8
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(T -zI)- S 1q q
q j q[])

and hence

B ORSq §q~]BO((T-zI)-T -1 )T FS[] ~z

B,,RJJ --- iI) ' T -T)( ~ 1 )i S[q] u)dz.

By (3.1) we have

B (Tw, v) =B (w, Tv), Vw, v eHD(2

and hence

B,2 ( (T-z I w, v) = BII ( W (T-zI) lv)

which yields

B jS [] (q] =) Bi~ ((T -T(A[]) 1-z)- 1 q, Tz 1 u)dz.

Because ul OR(e 2MR) we can write

(7.12) u = : ZCk Sk
k= 1

(7.13) 2 Cki 0

k= 1

Hence

(T-zI) -1u = k A 1 -z)- 1CkSk.
k= 1

Let us define

(7.14) 1 = 1,-(- j 1 1 AjJzJ- (T-z) lu dz

k=1
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Since A = A I = 1,' ,m(j) is inside of the circle 7- and all other
j+t = ,-1

Ak are outside we have from the residual theorem using the poles at

z = A.K and z = (q]

jI
1 -1 -1 --1J AIqIAz) (Ak -z) d

I for k J+t, t= O,--",m(j)

[(All)-'for k ~ J+e, t= O,--,m(j)*

Therefore

(7.15) (( Z k -kS k
k=1

and hence for any

(7.16) I [ 5 q + f I 1 ( T q-)5 t

B IB"R(T-T)S] :5- 11 (Tq ) [q] 1R(q j q J+I EE(R) ER)

Let us estimate both terms. To this end we write

(T -T) VS = (T -T)S + (T -T)(S[+] sq J q j+e q i~e j~t

and

(T -T)S =(TIR-I)TS. (TrR.-I)Al'S
q j+I q j q ij j+1

Then using assumption A3 we get

II(T q-T)SJ+[EMR) < CA I max lIS. -- (II-. : CF(N(q)).
t=O,q• •.,im(j) + E (iR)

Further because U T q-TI1E{RCOR) :51 (for q sufficiently large) we get
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(7.17) 11 (T-T)( [q] _ S 11 < C(F(N(q)).q [ j+E(L2R) J .j+t E(nR) _

and hence

(7.18) <ICT [ CF(N(q)).

q j+e E(1
2

R)

Let us now estimate the second term in (7.16).

We know that uE e(Q2R). Hence u (x) = u(2x) E2(MR). Therefore we

can write

(7.19) u -- CSk

k=l
with

(7.20) Z1c: 12 < U

k=1

On the other hand we have on fNR/2.

U Uo

' Ak(7.21) u (x) = u(2x) = kSk(2x) = 2S

k=1 k=1

and (7. 19) yields

(7.22) Ck = Ck2

k=1

Now we consider u (x) = u(2x). We get from (7.15) for X 61R

(7.24) u (x) = dkSkx)

k=l

where

(7.25) dk = I [(A•ql)-
1 -Ak1 ] -C 2 Ak k A

0 k =J+
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Since for koJ+t the numbersA- 1 are outside of -and (A Is

inside of 7 (for q sufficiently large) we have

(7.26) IAý I _([Aql]]i a > 0.

(7.25), (7.26), (7.22), (7.23) yield

k=1 C0 k=1

Therefore u e(V%) and hence u e.2C02R) Using assumption A3 we

have

(7.27) inf 11U- [E(MR) 5 CF(N(q)).
CEWq (fR)

Hence from (7.16) usin., (7.18) and (7.27)

(7.28) ,B rr jq] -§[q] 5I 2
On[R j+t .j+e' uj~~ FNl

Using now (6 13) we get

BR[ q _Sj+,' u) 1 CF(N(q))
2

i.e. ID I CF(N(q))2 what was to be proven. 3

Remark 7.1 We have assumed that (2.6) holds. This allows us to use the

decomposition (2.11). In the general case the decomposition is more complex.

The present theory can be generalized to this case but we will not address the

problem here.
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8. Numerical Results

Let us consider the following mixed boundary value problem. Let 0 be a

cube with a crack,

a = OIx) <1, j= 1,2,3} - {(x 1 ,X 2 , 0)1O-x 1 -1, O<x 2 -1}

as shown in Fig. 8. 1.

4 x 3

X,

X2

Figure 8.1. The cracked cube

On both sides of the crack and the two faces x, = land x 2 = 1

Dirichlet conditions u = 0 are prescribed. On the remaining 4 faces of the

cube the following Neumann conditions are prescribed

8u
i) a- 0 on the faces x= -1, x -1

ii) a= cos !r(x +1) cos 1(x +1) for x3 = 1 1
j8n 414 23

The boundary conditions imply that the solution will not have singulari-

ties at the edges and vertices of the cube (since one can use even and odd

extensions). The solution has a singularity at the two edges of the cracks,

(0, 1) x (01.{Ok and (0) x (0, 1) x 0} and at the vertex at (0,0,0). For

a more detailed description of the edge and vertex singularities in this
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example see [PSi]. The (smallest) leading euge singularity exponent is a = 2"

The leading vertex singularity exponent A is not analytically known, our

computational results below show A1 = 0.2966. We use symmetry and analyze

only the half cube (-1 <x 3 <0) computationally. The p-version of the

finite element method implemented in the program STRIPE [S] is used. We used

two different meshes, the "unrefined mesh" and the "refined mesh." Both

meshes contain a ball around the vertex at 0.

Figure 8.2 shows the unrefined mesh. For clarity, the mesh inside C is

shown separately.

Figure 8.2. The basic unrefined mesh around the vertex at 0.

In Figure 8.3 we show the refined (geometrical) mesh with 6 layers.

The sizes of adjoining layers have a ratio of a- = 0. 15 for the mesh used in

the computation (in Fig.8.3 a = 0.5 Is used for clarity).

Figure 8.3. Detail of the geometrically refined mesh In the neighborhood
of the vertex at 0.
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[q] c, and
In table 8.1 we report N(q) and the computed values of' A1 1

HIUqI1E(Q) for the mesh shown in Figure 8.2 as function of the degree p of the

elements. Table 8.2 gives analogous results for the refined mesh (with 6

layers) shown in Figure 8.2. From tables 8.1 and 8.2 we clearly see the effect

of the refinement of the mesh. By using a more refined mesh, a higher value

of p and extrapolation, we estimate the exact values for 1jull2(), AC as1'as

2
(8.1) A1 = 0.29658 C1 = 10.123, IjullE(f) = 8.66908

Table 8.1. The values of A1 , C and 1lull 2 for the mesh shown in Fig.8.2
1 EQ

P N Aq] C[ ll 2
1 1EM

2 133 0.315743 9,50571 8.5697572
3 231 0.313768 9.55731 8.5867675
4 420 0.307749 9.75874 8.6263436
5 700 0.304403 9.86982 8.6403593
6 1099 0.302277 9.93970 8.6485159
7 1645 0.300888 9.98514 8.6536345
8 2366 0.299943 10.0161 8.6570896
9 3290 0.299274 10.0380 8.6595274

10 4445 0.298785 10.0540 8.6613051
11 5859 0.298418 10.0660 8.6626398

2Table 8.2. The values of AC and lull for the refined mesh shown in

Fig. 8.2

P N A[q]- [[q] qHull 2

A1  1 lllE(Q)

2 1438 0.297669 10.5183 8.6049893
3 2582 0.296866 10.1308 8.6320936
4 4852 0.296603 10.1317 8.6671875
5 8304 0.296589 10.1210 8.6686951
6 13326 0.296584 10.1214 8.6690024
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We use the values on (8.1) to compute the relative errors

11Uq - u11E 2 A[q]- _A IC [lq -C 1 I

qlul E 1 1-Hlull 2 ' A I 11 ' C l l1
E

In Figure 8.4 we show these relative errors for the mesh shown in Figure 2.

We see that the errors of C and A1 decrease with the same rate as the

square of the error in the energy norm as predicted by theorems 6.1, 7.1. We

obtain from estimates (5.7) (5.8) that the error behaves like 0((N(q))-2/3

This rate is indicated in Figure 8.4 too. We see that the asymptotic analysis

of previous section is completely applicable in the computed range.

0.05 - - -_.
A1

0.00.0l~2 •-""-€.. :
-p=2 •.>

3-.& -4

0.0025 6

200 500 1000 2000 5000

degrees of freedom

Figure 8.4 Relative error for unrefined mesh

In Figure 8.5 we show analogous results for the refined mesh. We see

that also here the accuracy of A1 and C1 increases as the square of the

error measured in the energy norm. We are in the preasymptotic range of the

p-version, whIch can be interpreted as the h-p version. For large p. the

-2/3errors again decrease with the rate O(N~q) ). The corresponding slope is

indicated in Fig. 8.5.
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I1 o -2 " , j ,

N.Ii023 N IAj21Iu-

15003 00 300500 700 100

N1 C -I,

--- -- ----

1500 2000 3000 5000 7000 10000

degrees of freedom

Figure 8.5 Relative error for the mesh with geometric refinement

We note that we have used here the classical p-version with the same

degree p of polynomials in all elements. By using low values of p close

to singularities and high values of p away from the singularities comparable

results can be obtained with a much smaller number of degrees of freedom.
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